
CNT 4714: PHP – Part 3 Page 1 Mark Llewellyn ©

CNT 4714: Enterprise Computing

Spring 2010

Introduction to PHP – Part 3

School of Electrical Engineering and Computer Science

University of Central Florida

Instructor : Dr. Mark Llewellyn

markl@cs.ucf.edu

HEC 236, 407-823-2790

http://www.cs.ucf.edu/courses/cnt4714/spr2010

CNT 4714: PHP – Part 3 Page 2 Mark Llewellyn ©

PHP and Database Connectivity
• PHP offers built-in support for a wide variety of database

systems from Unix DBM through relational systems such as

MySQL to full size commercial systems like Oracle.

• We’ll continue to use MySQL as the underlying database

system so that you can easily compare the work we’ve done

with MySQL using Java servlets and JSPs.

• Before you go any further in these notes you must configure

PHP to access MySQL databases. Beginning with PHP 5,

MySQL is not enabled by default in PHP, nor is the MySQL

library bundled with PHP.

– Versions of MySQL greater than 4.1.0 use MySQLi extensions.

– Versions of MySQL less than 4.1.0 use MySQL extensions.

CNT 4714: PHP – Part 3 Page 3 Mark Llewellyn ©

PHP and Database Connectivity (cont.)

This is the MySQL library that

both mysql and mysqli

extensions require.

CNT 4714: PHP – Part 3 Page 4 Mark Llewellyn ©

PHP and Database Connectivity (cont.)

These are the MySQL

extension files that will be

used to link PHP to MySQL.

CNT 4714: PHP – Part 3 Page 5 Mark Llewellyn ©

PHP and Database Connectivity (cont.)

These two extensions will not be

commented out. At loadtime, these

extensions will now be included in

the PHP environment, provided

that the file php.ini is set..

CNT 4714: PHP – Part 3 Page 6 Mark Llewellyn ©

PHP should be configured for

MySQL. You can verify that the

php.ini file was properly read and

the MySQL extensions are loaded

by running the info.php script and

looking for these entries.

CNT 4714: PHP – Part 3 Page 7 Mark Llewellyn ©

PHP and Database Connectivity (cont.)

• PHP contains a fairly extensive set of commands that can be

used to access and manipulate MySQL databases.

• A very brief listing of some of these commands appears on

the next page.

• For a complete listing see:

http://us2.php.net/manual/en/print/ref.mysql.php.

http://us2.php.net/manual/en/print/ref.mysqli.php.

http://us2.php.net/manual/en/print/ref.mysql.php
http://us2.php.net/manual/en/print/ref.mysql.php
http://us2.php.net/manual/en/print/ref.mysql.php
http://us2.php.net/manual/en/print/ref.mysql.php
http://us2.php.net/manual/en/print/ref.mysql.php
http://us2.php.net/manual/en/print/ref.mysql.php
http://us2.php.net/manual/en/print/ref.mysql.php
http://us2.php.net/manual/en/print/ref.mysql.php
http://us2.php.net/manual/en/print/ref.mysql.php
http://us2.php.net/manual/en/print/ref.mysql.php
http://us2.php.net/manual/en/print/ref.mysql.php
http://us2.php.net/manual/en/print/ref.mysql.php
http://us2.php.net/manual/en/print/ref.mysqli.php
http://us2.php.net/manual/en/print/ref.mysqli.php
http://us2.php.net/manual/en/print/ref.mysqli.php
http://us2.php.net/manual/en/print/ref.mysqli.php
http://us2.php.net/manual/en/print/ref.mysqli.php
http://us2.php.net/manual/en/print/ref.mysqli.php
http://us2.php.net/manual/en/print/ref.mysqli.php
http://us2.php.net/manual/en/print/ref.mysqli.php
http://us2.php.net/manual/en/print/ref.mysqli.php
http://us2.php.net/manual/en/print/ref.mysqli.php
http://us2.php.net/manual/en/print/ref.mysqli.php
http://us2.php.net/manual/en/print/ref.mysqli.php

CNT 4714: PHP – Part 3 Page 8 Mark Llewellyn ©

Portion of mysql.dll Extension

CNT 4714: PHP – Part 3 Page 9 Mark Llewellyn ©

Portion of mysqli.dll Extension

CNT 4714: PHP – Part 3 Page 10 Mark Llewellyn ©

PHP and Database Connectivity (cont.)

• Now that you have PHP set to accept MySQL extensions,

let’s connect to the bike database that we used for examples

with Java servlets and JSPs.

• The following example is a simple database connection

process in PHP where the client interacts with the database

from an XHTML form that simply asks them to select which

attributes from the bikes table that they would like to display.

This is done through the data.html file.

• When the client clicks the submit query button, the

database.php script executes by connecting to the

database, posting the query, retrieving the results, and

displaying them to the client.

CNT 4714: PHP – Part 3 Page 11 Mark Llewellyn ©

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<!-- data.html -->
<!-- Querying a MySQL Database From a PHP Script -->

<html xmlns = "http://www.w3.org/1999/xhtml">
<head> <title>Sample Database Query From PHP</title> </head>
<body style = "background-color: #545454" background=image1.jpg >

<h2 style = "font-family: arial color: blue"> Querying a MySQL database from a PHP Script. </h2>
<form method = "post" action = "database.php">

<p>Select a field to display:
<!-- add a select box containing options for SELECT query -->
<select name = "select">

<option selected = "selected">*</option>
<option>bikename</option>
<option>size</option>
<option>color</option>
<option>cost</option>
<option>purchased</option>
<option>mileage</option>

</select>
</p>
<input type = "submit" value = "Send Query" style = "background-color: blue;

color: yellow; font-weight: bold" />
</form>

</body> </html>

data.html

Client side

CNT 4714: PHP – Part 3 Page 12 Mark Llewellyn ©

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<!-- database.php -->
<!-- Program to query a database and send results to the client. -->

<html xmlns = "http://www.w3.org/1999/xhtml">
<head> <title>Database Search Results</title> </head>

<body style = "font-family: arial, sans-serif"
style = "background-color: #4A766E" background=image1.jpg link=blue vlink=blue>
<?php

extract($_POST);

// build SELECT query
$query = "SELECT " . $select . " FROM bikes";

// Connect to MySQL
if (!($database = mysqli_connect("localhost",

"root", "root“, bikedb)))
die("Could not connect to database");

database.php

Server side

Page 1

Connect to MySQL database.

URL, username, password, and

database all specified.

Default query is to select the attributes chosen by

the client for use in a SELECT query.

CNT 4714: PHP – Part 3 Page 13 Mark Llewellyn ©

// query bikedb database
if (!($result = mysql_query($database, $query))) {

print("Could not execute query!
");
die(mysql_error());

}
?>

<h3 style = "color: blue">
Database Search Results</h3>
<table border = "1" cellpadding = "3" cellspacing = "3"

style = "background-color: #00FFFF"> <!-- ADD8E6 -->

<?php
// fetch meta-data
$metadata = mysqli_fetch_fields($result);
print("<tr>");
for ($i=0; $i<count($metadata); $i++){

print("<td>");
printf("%s",$metadata[$i]->name);
print("</td>");

}
print("</tr>");

database.php

Server side

Page 2

Get metadata for
the query

Display metadata in the
top row of the table

CNT 4714: PHP – Part 3 Page 14 Mark Llewellyn ©

// fetch each record in result set
for ($counter = 0;

$row = mysql_fetch_row($result);
$counter++){
// build table to display results
print("<tr>");
foreach ($row as $key => $value)

print("<td>$value</td>");
print("</tr>");

}
mysql_close($database);

?>
</table>

Your search yielded

<?php print("$counter") ?> results.

<h5>Please email comments to

markl@cs.ucf.edu

</h5>
</body></html>

database.php

Server side

Page 3

CNT 4714: PHP – Part 3 Page 15 Mark Llewellyn ©

Execution of data.html – Client side

Execution of data.html (client side of

the application) showing the drop-

down menu for the client to select the

attributes for the query.

When the selection is made and the

Send Query button is clicked the

results on the following page will be

displayed.

CNT 4714: PHP – Part 3 Page 16 Mark Llewellyn ©

Results of query SELECT *

FROM bikes. Display

indicates that 10 rows were

included in the result.

CNT 4714: PHP – Part 3 Page 17 Mark Llewellyn ©

Cookies
• A cookie is a text file that a Web site stores on a client’s

computer to maintain information about the client during and

between browsing sessions.

• A Web site can store a cookie on a client’s computer to

record user preferences and other information that the Web

site can retrieve during the client’s subsequent visits. For

example, many Web sites use cookies to store client’s

zipcodes. The Web site can retrieve the zipcode from the

cookie and provide weather reports and news updates

tailored to the user’s region.

• Web sites also use cookies to track information about client

activity. Analysis of information collected via cookies can

reveal the popularity of Web sites or products.

CNT 4714: PHP – Part 3 Page 18 Mark Llewellyn ©

Cookies (cont.)

• Marketers use cookies to determine the effectiveness of

advertising campaigns.

• Web sites store cookies on users’ hard drives, which raises

issues regarding security and privacy. Web sites should not

store critical information, such as credit-card numbers or

passwords, in cookies, because cookies are just text files that

anyone can read.

• Several cookie features address security and privacy

concerns. A server can access only the cookies that it has

placed on the client.

• A cookies has an expiration date, after which the Web

browser deletes it.

CNT 4714: PHP – Part 3 Page 19 Mark Llewellyn ©

Cookies (cont.)

• Users who are concerned about the privacy and security

implications of cookies can disable them in their Web

browsers. However, the disabling of cookies can make it

impossible for the user to interact with Web sites that rely on

cookies to function properly.

• Information stored in the cookie is sent to the Web server

from which it originated whenever the user requests a Web

page from that particular server. The Web server can send

the client XHTML output that reflects the preferences or

information that is stored in the cookie.

• The location of the cookie file varies from browser to

browser. Internet Explorer places cookies in the Cookies

directory located at C:\Documents and Settings\...\Cookies

CNT 4714: PHP – Part 3 Page 20 Mark Llewellyn ©

Cookies (cont.)

• After a cookie is created, a text file is added to this directory.

While the name of the file will vary from user to user a

typical example is shown below.

• The contents of a cookie are shown on page 74.

CNT 4714: PHP – Part 3 Page 21 Mark Llewellyn ©

Cookies (cont.)

• Now let’s create the code necessary to create our own cookie.

• In this example, a PHP script is invoked from a client-side

HTML document. The HTML document creates a form for the

user to enter the information that will be stored in the cookie.

(Often the information that is stored in a cookie will be

extracted from several different areas and may involved

tracking the client’s actions at the Web site.)

• Once the user has entered their information, when they click the

Write Cookie button, the cookies.php script executes.

• The XHTML document and the PHP script are shown on the
next pages. The XHTML document cookies.html is on

page 36 and the PHP script cookies.php appears on page

37.

CNT 4714: PHP – Part 3 Page 22 Mark Llewellyn ©

cookies.html – page 1
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<!-- cookies.html -->
<!-- Writing a Cookie -->

<html xmlns = "http://www.w3.org/1999/xhtml">
<head> <title>Writing a cookie to the client computer</title> </head>

<body style = "font-family: arial, sans-serif;
background-color: #856363" background=image1.jpg>
<h2>Click Write Cookie to save your cookie data.</h2>

<form method = "post" action = "cookies.php" style = "font-size: 10pt"
background-color: #856363">

Name:

<input type = "text" name = "NAME" />

Height:

<input type = "text" name = "HEIGHT" />

Favorite Color:

<input type = "text" name = "COLOR" />

<p>

<input type = "submit" value = "Write Cookie" style = "background-color: #0000FF;
color: yellow; font-weight: bold" /></p>

</form>
</body> </html>

CNT 4714: PHP – Part 3 Page 23 Mark Llewellyn ©

cookies.php – page 1
<?php

// cookies.php
// Program to write a cookie to a client's machine
extract($_POST);

// write each form field’s value to a cookie and set the
// cookie’s expiration date
setcookie("Name", $NAME, time() + 60 * 60 * 24 * 5);
setcookie("Height", $HEIGHT, time() + 60 * 60 * 24 * 5);
setcookie("Color", $COLOR, time() + 60 * 60 * 24 * 5);

?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns = "http://www.w3.org/1999/xhtml">
<head> <title>Cookie Saved</title> </head>
<body style = "font-family: arial, sans-serif", background=image1.jpg>

<p>The cookie has been set with the following data:</p>
<!-- print each form field’s value -->

Name:

<?php print($NAME) ?>

Height:

<?php print($HEIGHT) ?>

Favorite Color:
<span style = "color: <?php print("$COLOR\">$COLOR") ?>

<p>Click here to read the saved cookie.</p>

</body> </html>

Function setcookie sets the cookies
to the values passed from the
cookies.html form. Function
setcookie prints XHTML header
information and therefore it needs to
be called before any other XHTML
(including comments) is printed.

The third argument to
setcookie is optional and
indicates the expiration date of
the cookie. In this case it is
set to expire 5 days from the
current time. Function time
returns the current time and
then we add to this the
number of seconds after
which the cookie is to expire.

CNT 4714: PHP – Part 3 Page 24 Mark Llewellyn ©

Cookies (cont.)

HTML form
generated by
cookies.html

CNT 4714: PHP – Part 3 Page 25 Mark Llewellyn ©

Cookies (cont.)

Output from
cookies.php script
showing the values in
the newly created
cookie.

CNT 4714: PHP – Part 3 Page 26 Mark Llewellyn ©

Cookies (cont.)

• Once the cookie has been created, the cookies.php script gives

the user the chance to view the newly created cookie by

invoking the readCookies.php script from within the

cookies.php script by clicking on the link.

• The readCookies.php script code is illustrated on the next page

followed by the output from the execution of this PHP script.

CNT 4714: PHP – Part 3 Page 27 Mark Llewellyn ©

readCookies.php – page 1

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<!-- readCookies.php -->
<!-- Program to read cookies from the client's computer -->

<html xmlns = "http://www.w3.org/1999/xhtml">
<head><title>Read Cookies</title></head>

<body style = "font-family: arial, sans-serif" background=image1.jpg>
<p>

 The following data is saved in a cookie on your computer.

</p>
<table border = "5" cellspacing = "0" cellpadding = "10">

<?php
// iterate through array $_COOKIE and print
// name and value of each cookie
foreach ($_COOKIE as $key => $value)

print("<tr>
<td bgcolor=\"#F0E68C\">$key</td>
<td bgcolor=\"#FFA500\">$value</td>
</tr>");

?>
</table>

</body> </html>

Superglobal array
holding cookie.

CNT 4714: PHP – Part 3 Page 28 Mark Llewellyn ©

Cookies (cont.)

Output from the
readCookies.php
script.

CNT 4714: PHP – Part 3 Page 29 Mark Llewellyn ©

Cookies (cont.)

Contents of the

cookie stored

on the client

machine.

CNT 4714: PHP – Part 3 Page 30 Mark Llewellyn ©

Cookies (cont.)

Actual text file holding cookie data for the
cookie that was created in this example.

CNT 4714: PHP – Part 3 Page 31 Mark Llewellyn ©

Dynamic Content in PHP
• Of all the strengths PHP exhibits as a server-side scripting

language, perhaps its greatest strength lies in its ability to

dynamically change XHTML output based on user input.

• In this final section of notes, we’ll build on the examples we’ve

constructed in the previous two sets of notes by combining

form.html and form.php into one dynamic PHP document

named dynamicForm2.php.

• We’ll add error checking to the user input fields and inform the

user of invalid entries on the form itself, rather than on an error

page. If an error exists, the script maintains the previously

submitted values in each form element.

• Finally, after the form has been successfully completed, we’ll

store the input from the user in a MySQL database.

CNT 4714: PHP – Part 3 Page 32 Mark Llewellyn ©

Basically, the same
registration form that was
used in a previous example.

CNT 4714: PHP – Part 3 Page 33 Mark Llewellyn ©

User fills in the form and clicks
the Register button.

CNT 4714: PHP – Part 3 Page 34 Mark Llewellyn ©

Screen the user sees
after clicking the
Register button.

CNT 4714: PHP – Part 3 Page 35 Mark Llewellyn ©

Screen the user sees
after clicking to see
the entire database.

CNT 4714: PHP – Part 3 Page 36 Mark Llewellyn ©

Dynamic nature of the PHP form is illustrated
when the user fails to enter proper information
into the form. In this case, the user forgot to enter
their first name. Error checking is in place on
each user input location and the page is
dynamically updated to reflect the error
processing and correction capabilities. The
database will not be updated until the user has
correctly filled in all required fields.

CNT 4714: PHP – Part 3 Page 37 Mark Llewellyn ©

Screen shot from MySQL of the contacts relation
after the inclusion of several users. Note that the
values in the table are the same as those returned to
the PHP document in the previous slide.

CNT 4714: PHP – Part 3 Page 38 Mark Llewellyn ©

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<!-- dynamicForm2.php -->

<html xmlns = "http://www.w3.org/1999/xhtml">
<head>

<title>Sample form to take user input in XHTML</title>
</head>
<body style = "font-family: arial, sans-serif; background-color: #856363"
background=background.jpg>

<?php
extract ($_POST);
$iserror = false;
// array of magazine titles
$maglist = array("Velo-News",

"Cycling Weekly",
"Pro Cycling",
"Cycle Sport",

"RadSport",
"Mirror du Cyclisme");

// array of possible operating systems
$systemlist = array("Windows XP",

"Windows 2000",
"Windows 98",
"Linux",
"Other");

dynamicForm2.php – page 1

CNT 4714: PHP – Part 3 Page 39 Mark Llewellyn ©

// array of name and alt values for the text input fields
$inputlist = array("fname" => "First Name",

"lname" => "Last Name",
"email" => "Email",
"phone" => "Phone");

if (isset ($submit)) {
if ($fname == "") {

$formerrors["fnameerror"] = true;
$iserror = true;

}
if ($lname == "") {

$formerrors["lnameerror"] = true;
$iserror = true;

}
if ($email == "") {

$formerrors["emailerror"] = true;
$iserror = true;

}
if (!ereg("^\([0-9]{3}\)[0-9]{3}-[0-9]{4}$", $phone)) {

$formerrors["phoneerror"] = true;
$iserror = true;

}
if (!$iserror) {

// build INSERT query
$query = "INSERT INTO contacts " .

"(ID, LastName, FirstName, Email, Phone, Magazine, OS) " .
"VALUES (null, '$lname', '$fname', '$email', " . "'" . quotemeta($phone) . "', '$mag', '$os')";

dynamicForm2.php – page 2

CNT 4714: PHP – Part 3 Page 40 Mark Llewellyn ©

// Connect to MySQL
if (!($database = mysql_connect("localhost",

"root", "root")))
die("Could not connect to database");

// open MailingList database
if (!mysql_select_db("MailingList", $database))

die("Could not open MailingList database");

// execute query in MailingList database
if (!($result = mysql_query($query, $database))) {

print("Could not execute query!
");
die(mysql_error());

}
print("<p>Hi

 $fname.
Thank you for completing the survey.

You have been added to the
$mag mailing list. </p>
The following information has been saved in our database:

<table border = '0' cellpadding = '0' cellspacing = '10'>
<tr>
<td bgcolor = '#ffffaa'>Name </td>
<td bgcolor = '#ffffbb'>Email</td>
<td bgcolor = '#ffffcc'>Phone</td>
<td bgcolor = '#ffffdd'>OS</td>
</tr>
<tr>

dynamicForm2.php – page 3

CNT 4714: PHP – Part 3 Page 41 Mark Llewellyn ©

<!-- print each form field’s value -->
<td>$fname $lname</td>
<td>$email</td>
<td>$phone</td>
<td>$os</td>
</tr></table>

<div style = 'font-size : 10pt; text-align: center'>

<div style = 'font-size : 18pt'>

Click here to view entire database.
</div>

</div></body></html>");
die();

}
}
print("<h1>This is a sample registration form.</h1>

Please fill in all fields and click Register.");
if ($iserror) {

print("

Fields with * need to be filled in properly.");

}
print("<!-- post form data to dynamicForm2.php -->

<form method = 'post' action = 'dynamicForm2.php'>

Please fill out the fields below.

dynamicForm2.php – page 4

Invoke PHP script to see
contents of entire
database if user clicks
this link. Code begins on
page 14.

The form created is self-
submitting (i.e., it posts to

itself). This is done by setting
the action to

dynamicForm2.php

CNT 4714: PHP – Part 3 Page 42 Mark Llewellyn ©

<!-- create four text boxes for user input -->");
foreach ($inputlist as $inputname => $inputalt) {

$inputtext = $inputvalues[$inputname];

print("<img src = 'images/$inputname.gif'
alt = '$inputalt' /><input type = 'text' name = '$inputname' value = '" . $$inputname . "' />");

if ($formerrors[($inputname)."error"] == true)
print("*");

print("
");
}
print("<span style = 'font-size : 10pt");
if ($formerrors["phoneerror"]) print("; color : red");
print("'>Must be in the form (555)555-5555

<img src = 'images/downloads.gif'
alt = 'Publications' />

Which magazine would you like information about?

<!-- create drop-down list containing magazine names -->
<select name = 'mag'>");

foreach ($maglist as $currmag) {
print("<option");
if (($currmag == $mag))

print(" selected = 'true'");
print(">$currmag</option>");

}

dynamicForm2.php – page 5

The $$variable notation
specifies variable variables.
PHP permits the use of
variable variables to allow
developers to reference
variables dynamically.
The expression $$variable
could also be written as
${$variable} for added
clarity.

CNT 4714: PHP – Part 3 Page 43 Mark Llewellyn ©

print("</select>

Which operating system are you currently using?

<!-- create five radio buttons -->");

$counter = 0;

foreach ($systemlist as $currsystem) {
print("<input type = 'radio' name = 'os'

value = '$currsystem'");

if ($currsystem == $os) print("checked = 'checked'");
if (iserror && $counter == 0) print("checked = 'checked'");

print(" />$currsystem");

if ($counter == 2) print("
");
$counter++;

}

print("<!-- create a submit button -->

<input type = 'submit' name = 'submit' value = 'Register' />
</form></body></html>");

?>

dynamicForm2.php – page 6

CNT 4714: PHP – Part 3 Page 44 Mark Llewellyn ©

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<!– formDatabase2.php -->
<!-- Program to query a database and send results to the client. -->

<html xmlns = "http://www.w3.org/1999/xhtml">
<head> <title>Database Search Results</title> </head>
<body style = "font-family: arial, sans-serif"

style = "background-color: #F0E68C" background=image1.jpg>
<?php

extract($_POST);
// build SELECT query
$query = "SELECT * FROM contacts";

// Connect to MySQL
if (!($database = mysqli_connect("localhost", "root", "root“, MailingList)))

die("Could not connect to database");
// query MailingList database

if (!($result = mysqli_query($database, $query))) {
print("Could not execute query!
");
die(mysqli_error());

}
?>
<h3 style = "color: blue">
Mailing List Contacts</h3>

formDatabase2.php – page 1

CNT 4714: PHP – Part 3 Page 45 Mark Llewellyn ©

<table border = "1" cellpadding = "3" cellspacing = "2"
style = "background-color: #ADD8E6">
<tr>

<td>ID</td>
<td>Last Name</td>
<td>First Name</td>
<td>E-mail Address</td>
<td>Phone Number</td>
<td>Magazine</td>
<td>Operating System</td>

</tr>
<?php

// fetch each record in result set
for ($counter = 0;

$row = mysqli_fetch_row($result);
$counter++){
// build table to display results
print("<tr>");
foreach ($row as $key => $value)

print("<td>$value</td>");
print("</tr>");

}
mysqli_close($database);

?>

</table>
</body>

</html>

formDatabase2.php – page 2

CNT 4714: PHP – Part 3 Page 46 Mark Llewellyn ©

Schema of the MailingList
database table contacts required
for the PHP database example to
work. Script is available on the
code page and shown on the next
page.

CNT 4714: PHP – Part 3 Page 47 Mark Llewellyn ©

